If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=4x^2+16x+8
We move all terms to the left:
0-(4x^2+16x+8)=0
We add all the numbers together, and all the variables
-(4x^2+16x+8)=0
We get rid of parentheses
-4x^2-16x-8=0
a = -4; b = -16; c = -8;
Δ = b2-4ac
Δ = -162-4·(-4)·(-8)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{2}}{2*-4}=\frac{16-8\sqrt{2}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{2}}{2*-4}=\frac{16+8\sqrt{2}}{-8} $
| 4h+10=22 | | (1/2)x+6=3x-1 | | 3x-4+3x-4+5x-12=180 | | X2-48x+540=0 | | x*2+4=(x+1)(x+3) | | 4x=7x-16=6 | | 12/20n=35/44 | | 4=5w=11 | | 5x+11=6x+16 | | 5x+11+6x+16=180 | | 3x+12=80 | | 4x+5+4x+5+5x+14=180 | | H(t)=-3t^2+12t+15 | | -f+4=7f-3 | | 19/2=12/7n+1+21/2 | | 4x^2+53=-11 | | 8-12=4z | | 8+-12=4z | | 4x^2+53=11 | | 2y=2/5y+3 | | 17/8y=71/2 | | 32+12r=4r | | m-2-8=1/2(m-2) | | 9x+24=180 | | 25/x=x/82 | | 1/2^3x+2=8^5x-4 | | 35-5m=-8(-6-m) | | 36+4x=8(-5x-1) | | 8(x-2)-3(2x+1)=7x+4-3(x+1) | | -(4x-6)-6=-18+5x | | x2-1x-12=0 | | q/2-7=15+2q |